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Optical solitons in resonant and nonresonant nonlinear media in the presence of perturbations

Mihai Piscureanu and Doina Manaila-Maximean
Department of Physics, University ‘‘Politehnica’’ Bucharest, Splaiul Independentei 313, Bucharest, 77206, Romania

~Received 9 February 1999!

We studied the optical solitons in nonlinear resonant and nonresonant media in the presence of perturbations,
assuming that the transient effects are stimulated by the light scanning beam. We treated a slight deviation
from the exact necessary condition for the soliton existence (2bn51), as a small perturbation for the inte-
grable system, studying its influence upon the soliton propagation conditions. The approximation is constructed
by the help of an algebraic version of the soliton perturbation theory using a Riemann boundary problem in
connection with the inverse scattering method. We have obtained the soliton equation and we have solved it in
the presence of a small perturbation in the adiabatic approximation. In this case we have demonstrated that for
a Lorentz profile line the amplitude of the soliton remains unchanged, the only effect of the perturbation results
in a phase shift.

PACS number~s!: 42.65.Tg, 42.81.Dp
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I. INTRODUCTION

When a short optical pulse propagates through a dis
sive nonlinear optical medium, the spectral content of
pulse can become modified because of the nonlinear op
process of self-phase modulation effect. The shape of
pulse can modify because of the propagation effects, suc
dispersion of the group velocity within the medium@1#.

Under certain conditions it is possible for the effects
the group velocity dispersion to completely compensate
effects of the self-modulation, so that optical pulses c
propagate through a dispersive, nonlinear optical med
with an invariant shape. These pulses are known as op
solitons.

The study of the propagation of the light pulses in me
with nonresonant nonlinearities establishes the effects of
self-focusing and anomalous dispersion on the pulse ev
tion. The formation of solitons in such combined media w
first demonstrated@2–4# by considering the scanning of
bidimensional light beam, normally incident onto the surfa
of a nonlinear medium. Under specific conditions, the lig
soliton emerges, having the properties of a traveling wa
guide channel and of a 2p pulse.

Owing to the analogy between the equations describ
the propagation of the incidental beams@3,5,6# and of the
propagating pulses, we can study the evolution of the sol
pulses in combined media. The formal similitude of t
equations allows the application of the results obtained w
studying the incidental pulses, to the pulses propagatin
the nonlinear medium by direct correspondence of the n
tions.

We studied the optical solitons in nonlinear resonant a
nonresonant media in the presence of perturbations, as
ing that the transient effects are stimulated by the scann
beam. Using the self-induced transparency theory, the ne
sary condition for the soliton existence is 2bn51, wheren is
the adimensional scanning speed andb is the parameter o
the Kerr-type nonlinearity. This condition expresses a b
ance between different competing factors, such as the
fraction divergence, the self-focusing, etc.

From the mathematical point of view, this condition re
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resents the existence criterion of the Lax representation
practice, the exact relationships between the parameter
the radiation and those of the medium may present a sl
deviation. Such a deviation can be treated as a perturba
of the integrable system considered, thus the problem of
perturbed solitons investigation appears. Extensions of
perturbed solitons theory were made by Kaup@7# and Karp-
man @8#.

The present study is important because of several reas
First, the study is of great interest and leads to a sufficien
general approximation that can also be used in other alm
integrable systems. Thus, we demonstrate the efficienc
using the Riemann problem when analyzing the soliton p
turbation. On the other hand, many possible applications
theoretical studies are permitted. For example, a similar a
lytical approximation can be used in the case of the pro
gation of the pseudosoliton pulses in dielectric wavegui
~optical fibers! having a resonant nonlinearity associat
with a cubic nonlinearity.

In this study we have formulated the Riemann bound
problem in connection with the inverse scattering meth
Then we present the necessary elements of the soliton
turbation theory within the framework of the Riemann pro
lem.

II. THE RIEMANN PROBLEM FOR SOLITONS

The equations system describing the stationary distri
tion of the scanning beam propagating in a Kerr-type re
nant medium, written in adimensional variables is@2,3#

de

dz
1 i

d2e

dz22n
de

dx
12ib2ueu2e1^r&50, ~1.1!

n
dr

dx
2 idr1en50, ~1.2!

n
dn

dx
2

1

2
~er̄1ēr!50, ~1.3!
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wheree is the slowly varying complex envelope of the lig
beam,r is the polarizability of the medium, andn is the
population difference of the medium levels resonant with
incidental light.

The angular brackets in Eq.~1.1! signify an averaging
over the frequency detuningd'(v2v21) inside the inho-
mogenously broadened line,

^r&5E
2`

`

r~d!g~d!dd, ~2!

whereg(d) is the profile of the line.
The normalization condition for the distributiong(d) is

E
2`

`

g~d!dd51. ~3!

v is the frequency of the incidental light beam andv21 is the
resonant transition frequency. TheOx axis is situated on the
surface of the nonlinear medium and theOz axis is oriented
towards the center of the medium.

Eqs. ~1.1!,~1.2!,~1.3! are integrable and admit a solito
solution if the following condition is fulfilled@2#:

2bn51. ~4!

The zero curvature representation

dU

dz
2

dV

dx
1@U,V#50 ~5!

is equivalent to Eqs.~1! and~3! and it is given by theU and
V matrices of the form

U5b~es12ēs2!2 i zs3[U02 i zs3 , ~6!

V52bH F iex1S 2z2
1

2b De2
i

2 K r

z1bd L Gs1

1F i ēx2S 2z2
1

2b D ē2
i

2 K r̄

z1bd L Gs2

2 i F1

2 K n

z1bd L 2bueu21
z

b S 2z2
1

2b D Gs3J , ~7!

wherez is the spectral parameter,s3 , s65s16 is2 are the
Pauli matrices, andē is the complex conjugate ofe.

For solving Eqs.~1! by the inverse scattering method@8#,
we analyze the spectral problem

dF~x,z!

dx
2U~x,z!F~x,z!50. ~8!

We denote byT6(x,z) the Jost solutions matrix of Eq.~8!,
satisfying the conditions

T6~x,z! ——→
x→6`

J~z,x!, J~z,x!5exp~2 i zs3x!. ~9!

Consequently, the scattering matrixS(z) is

T2~x,z!5T1~x,z!S~z!, ~10!
e

where

S~z!5Fa~z!

b~z!
2b̄~z!

ā~z!
G , detS~z!51. ~11!

Let us introduce the matricesC65T6J21 and separate
the two columns

C6~x,z!5„C6
~1!~x,z!,C6

~2!~x,z!…. ~12!

Considering that the electromagnetic fielde(x) becomes
zero sufficiently fast whenuxu→`, the columnsC2

(1) and
C1

(2) are analytical in the upper semiplane of the comp
planez and the columnsC2

(2) andC1
(1) are analytical in the

lower semiplane.
We define two new matricesu(x,z) and ū(x,z):

u~x,z!5„C2
~1!~x,z!,C1

~2!~x,z!…

and ~13!

ū~x,z!5„C1
~1!~x,z!,C2

~2!~x,z!…,

fulfilling the conditions:

detu~x,z!5a~z!,

detū~x,z!5ā~z!,

u~x,z! ——→
x→6`

J~z,x!u6~z!J21~z,x!,

ū~x,z! ——→
x→6`

J~z,x!ū6~z!J21~z,x!, ~14!

where

u1~z!5Fab 0
1G , u2~z!5F1

0
b̄
aG ,

ū1~z!5F1
0

2b̄
ā G , ū2~z!5F ā

2b
0
1G . ~15!

The matricesu(x,z) andū(x,z) are connected to the sca
tering matrix as follows:

u1~z!5S~z!u2~z!, ū1~z!5S~z!ū2~z!. ~16!

Let z j and z̄ j be the zeros ofa(z) and of ā(z), respec-
tively, for j 51,...,N̄. In this case, the columnsu and ū are
proportional,

u~1!~x,z j !5g j~x!u~2!~x,z j !,

g j~x!5g j exp~2i z j x!, Im z j.0, g jPC,

ū ~2!~x,z̄ j !52ḡ j~x!ū~1!~x,z̄ j !,

ḡ j~x!5ḡ j exp~22i z̄ j x!, Im z̄ j,0, ḡ jPC. ~17!

The setb(j) (j5Rez), z j , z̄ j , g j , and ḡ j represent the
scattering data.
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Further on we present a method leading to the reconst
tion of the potentialU0(x) from the scattering data

U0~x!5bF 0
2ē

e
0G . ~18!

From relation~13! it follows that

ū1~x,j!u~x,j!5G~x,j!, ~19!

where

G~x,j!5J~jx!G~j!J21~jx!,

G~j!5F 1
b~j!

b̄~j!

1 G , ū15detū ū21. ~20!

Equation~19! represents the matricial Riemann proble
@i.e., theG(x,z) factorization, defined for realz, under the
conditions thatu and ū admit analytical prolongation in the
upper and lower semiplanes of thez plane, respectively#. An
analytical solution of the Riemann problem is of the form

u~x,z!5I 2(
j 51

N

~z j2z!21
ū~x,z̄ j !

aG ~ z̄ j !

1
1

2p i E2`

` dj

j2z
ū~x,j!r̄~x,j!, Im z.0

ū~x,z!5I 2(
j 51

N

~z j2z!21
u~x,z j !

ȧ~z j !
2

1

2p i

3E
2`

` dj

j2z
u~x,j!r1~x,j!, Im z,0 ~21!

where

ȧ~z j !5~d/dz!„a~z!…z5z j
, aG ~ z̄ j !5~d/dz!„ā~z!…z5 z̄ j

,

r1~x,j!5
G1~x,j!2I

a~j!
, r̄~x,j!5

G~x,j!2I

ā~j!
~22!

andI is the identity matrix. Now we shall express the pote
tial U0(x) as a function ofū(x,z).

This matrix admits the following asymptotic expansio
@9#:

ū~x,z!5I 1
1

2i z
V~x!1O~ uzu21!. ~23!

Then

U0~x!5
1

2
@s3 ,V~x!# or be~x!5V~x!12 ~24!

A. z-axis evolution of the scattering matrix

We consider the evolution equation of the form

dF

dz
2VF50. ~25!
c-

-

We take the solution of Eq.~25! of the form

F5uJh~z!, ~26!

whereh(z) is a function to be determined. Settingx→2`
into Eq. ~14! we obtained

F→Ju2h~z!,

V→V25
i

2 F2b K 1

z1bd L 12zS 2z2
1

2b D Gs3

[
i

2
~v11 iv2!s3 . ~27!

By introducing Eqs.~27! in Eq. ~25! we finally get the
evolution equation of the form

dh

dz
5S u2

21V2u22u2
21 du2

dz Dh. ~28!

For x→1`, using Eq.~14! we obtain

F→JSu2h~z!. ~29!

Introducing Eq.~28! in Eq. ~27! with the condition

lim
x→2`

V5 lim
x→1`

V, ~30!

we get

dS

dz
5@V2 ,S#. ~31!

From Eq.~31! it results

da

dz
50,

db

dz
1 i ~v11 iv2!b50. ~32!

The features of the discrete spectrum obey the followinz
evolution equations:

dz j

dz
50,

dg j

dz
1 i @v1~z j !1 iv2~z j !#g j50. ~33!

B. Soliton solution for the slowly varying complex envelope of
the electric field

Taking N51, r5 r̄50, and by help of the relation~17!
we can reduce the system~21! to the following form:

us~x,z!5I 2
z12 z̄1

z2 z̄1

ūs~x,z̄1!F̄1~x!,

ūs~x,z!5I 2
z̄12z1

z2z1
us~x,z1!F1~x!, ~34!

where we denoted byus the corresponding soliton matrix in
this particular case and
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F1~x!5F 0
g1~x!

g1
21~x!

0 G[F 0
exp~2y1 iq!

exp~y2 iq!

0 G ,
F̄1~x!52F 0

ḡ1
21~x!

ḡ1~x!

0 G
[2F 0

exp~y1 iq!

exp~2y2 iq!

0 G . ~35!

We denoted by

g15exp$ i @v1~z1!1 iv2~z1!#z1 iw01x0%, z15j11 ih1

y52h1~x2x!, q5~j1 /h1!y1K

K5@~j1 /h1!v22v1#z1~j1 /h1!x01w01
p

2
,

x5
1

2h1
~v2z1x0!. ~36!
e
th

en
ly

id
By solving Eqs.~34!, we obtain

ūs~x,z,z!5
z2 z̄1

z2z1
I 2

2ih1

z2z1
~ I 2F1!~ I 2F̄1F1!21,

~37!

when

V~x,z!54h1~ I 2F1!~ I 2F̄1F1!21. ~38!

From relation~38!, with help from relation~24!, we ob-
tain the solitonlike solution:

e~x,z!5
2h1~z!

b
exp@2 iq~x,z!#sechy~x,z!. ~39!

The explicit expressions for the soliton matricesus(x,z)
and ūs(x,z) are ~a! for the continuous spectrum:
us~x,j!5~j2 z̄1!21H@~y~x,z!,j!#, ūs~x,j!5~j2z1!21H@„y~x,z!,j…#,

H@„y~x,z!,j…#5F j2j12 ih1~z!tanhy~x,z!

2 ih1~z!exp@ iq~x,z!#sechy~x,z!

2 ih1~z!exp@2 iq~x,z!#sechy~x,z!

j2j11 ih1~z!tanhy~x,z! G . ~40!
d

he
of
and ~b! for the discrete spectrum

us~x,z1!

5
1

2 F exp@2y~x,z!#
2exp@ iq~x,z!#

2exp@2 iq~x,z!#
exp@y~x,z!# Gsechy~x,z!

ūs~x,z̄1!5
1

2 F exp@y~x,z!#
exp@ iq~x,z!#

exp@2 iq~x,z!#
exp@2y~x,z!# Gsechy~x,z!.

~41!

III. SCATTERING DATA IN THE PRESENCE
OF PERTURBATIONS

In practice, condition~4! might be only approximately
accomplished, namely,

2bn511«, ~42!

where the small parameter« is due to the deviations of th
light beam and medium features from those required in
soliton regime case. Let us consider the case when« occurs
as a consequence of the difference between the experim
value n and n0 featuring the purely soliton regime, name
2bn051 @e.g.,«52b(n2n0)#.

In this case, the perturbation term appears in the right s
of Eqs.~1! as

de

dz
1 i

d2e

dx22n0

de

dx
12ib2ueu2e1^r&5~«/2b!

de

dx
,

e

tal

e

dr

dx
22ibdr12ben52«

dr

dx
,

dn

dx
2b~er̄1ēr!52«

dn

dx
. ~43!

For the perturbed system~43! we have the following«
curvature representation:

dU

dz
2

dV

dx
1@U,V#52 i S «R̂1

dz

dz
s3D , ~44!

where the perturbation matrixR̂ is of the form:

R̂5
1

2F 2bK dn

dx

z1bd
L i

de

dx
2bK dr

dx

z1bd
L

2 i ē2bK dr̄

dx

z1bd
L bK dn

dx

z1bd
L G .

~45!

The spectral equation~8! keeps its form, with the only
specification thatU0 includes solutions of the perturbe
equation~43!, while the evolution equation~25! does not.

By using the soliton perturbation theory@10# formulated
within the framework of the Riemann problem, we derive t
evolution with z of the scattering matrix in the presence
the perturbations
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dS

dz
2@V2 ,S#52 i«u1S E

2`

`

J21u21R̂uJ dx8D u2
21,

~46!

which gives

da

dz
52«^u~1!us2R̂uu~2!&x ,

db

dz
1 i ~v11 iv2!b5«^u~1!us2R̂ exp~22i zx!uū ~1!&x .

~47!

In this caseu ( i ) are the columns ofu and the notation
^u ( i )u f (x)uu ( j )&x represents the integral

E
2`

`

u~ i !~x! f ~x!u~ j !~x!dx. ~48!

The formulas for the discrete spectrum are obtained
making the substitution«R̂→«R̂1(dz/dz)s3 in relations
~47!, where the limit conditionz approachesz1 (z→z1).
Thus we get

dò1

dz
5 i«^u1

~1!us2R̂uu1
~2!&x /^u1

~1!us1uu1
~2!&x ,

dg1

dz
1 i @v1~z1!1 iv2~z1!#g1

5«
g1

ȧ1~z1! F K u1
~2!us2R̂u

d

dz
@u~1!~z !2g1~x!u~2!

3~z!#z5z1L
x

22i ^u1
~1!us2R̂xuu1

~2!&xG , ~49!

where

u1
~ i !5u~ i !~x,z1!. ~50!

IV. ADIABATIC APPROXIMATION

Let us consider the evolution of the soliton along thez
axis in the adiabatic case. In this case we neglect the dis
tion of the soliton shape and the possible occurrence of a
Thus, the only consequence of the perturbation consists
change of thez-axis evolution of the soliton parameters fro
that expressed by the relations~36!.

Let us consider that at the boundary surface of the m
dium (z50), the electromagnetic field has the soliton for

es~x,z50!5~2h1 /b!expF22i j1x2 i S w01
p

2 D G
3sech~2h1x2x0!. ~51!

We search the perturbed solution ofe(x,z) under the soli-
tonlike form

e~x,z!5
2h1~z!

b
exp@2 iq~x,z!#sechy~x,z!, ~52!
y

r-
il.
f a

-

where

y52h1~z!@x2x~z!#, q5@j1~z!/h1~z!#y1K~z!.
~53!

The j1(z), h1(z), x(z), andK(z) are to be determined
The evolution of the soliton parameters is given by the re
tions ~49!.

In order to determine the perturbation matrix, we calc
late the polarizabilityr and the population differencen using
the solitontype solution~39! and the equations~1!,

r5 ibe
j11bd1 ih1 tanhy

~j11bd!21h1
2 ,

n5211
b2

2

ueu2

~j11bd!21h1
2 . ~54!

When

R1154bh1
3K 1

~j11bd!21h1
2

1

z1bdL sech2 y tanhy,

R1252 ieK 2K sech2 y1L tanhy1M

z1bd L ,

R215 i ēK 2K sech2 y1L tanhy2M

z1bd L , ~55!

where

K5
2ib2h1

2

~j11bd!21h1
2 ,

L5h1~j11bd1 ih1!2
b3dh1

~j11bd!21h1
2 ,

M5 i j1~j11bd1 ih1!2 ib2
j1

21h1
21bdj1

~j11bd!21h1
2 . ~56!

As referred to thez-axis evolution of the soliton param
eters and making the direct calculation, we g

^u1
(1)us2R̂uu1

(2)&x50. It follows z15j11 ih15const.
Becausedj1 /dz50, we may considerj150. This means

a transform of the coordinates with respect to a referen
frame tied up to the soliton wave. The parametersx and K
are given by the following equations:

dx

dz
5

v2

2h1
1

«

2bh1
ReK ~M2L !

bd

b2d21h1
2L

1
«

2b
ImK 2K2L1M

b2d21h1
2 L ,

dK

dz
52v11

«

bh1
ReK ~M2L !

2h1
2

b2d21h1
2L

1
«

b
ImK ~2K2L1M !

bd

b2d21h1
2L . ~57!
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For example, in the Lorentz line profile case

g~d!5~G/p!~d21G2!21, ~58!

we get

dK

dz
52v1 , ~59!

dx

dz
5

1

2h1
H b

Gh1

1

G1h1 /b
1«F2

2G13h1 /b

~G1h1 /b!22
h1

b

2
1

2
G

b2

h1
2G J [

1

2h1
~v21«Dv2!. ~60!

Thus, for the Lorentz line profile and generally for an
symmetrical functiong(d), the entire effect of the perturba
tion in the adiabatic case is present only in the expressio
x(z), while the amplitude of the soliton does not change
R

of

e~x,z!5
2h1

b
expS iv1z2 iw02 i

p

2 D
3sech@2h1x2~v21«Dv2!z2x0# ~61!

V. CONCLUSIONS

In this paper we have studied the propagation of the li
pulses in media with both resonant and nonresonant non
earities in order to establish the effect of such a symbio
upon the evolution of optical pulses. We have shown tha
slight deviation from the necessary condition for the solito
existence in such combined media leads to a modification
the soliton parameters. The established corrections were
termined in an analytical way, within the framework of th
perturbation theory, using a Riemann boundary problem
connection with the inverse scattering method. Thus, for
Lorentz profile line and generally for any symmetrical fun
tion g(d) the entire effect of the perturbation in the adiaba
approximation appears only in the expression of thex(z)
parameter, while the amplitude of the soliton remains u
changed.
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