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Optical solitons in resonant and nonresonant nonlinear media in the presence of perturbations
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We studied the optical solitons in nonlinear resonant and nonresonant media in the presence of perturbations,
assuming that the transient effects are stimulated by the light scanning beam. We treated a slight deviation
from the exact necessary condition for the soliton existenggr21), as a small perturbation for the inte-
grable system, studying its influence upon the soliton propagation conditions. The approximation is constructed
by the help of an algebraic version of the soliton perturbation theory using a Riemann boundary problem in
connection with the inverse scattering method. We have obtained the soliton equation and we have solved it in
the presence of a small perturbation in the adiabatic approximation. In this case we have demonstrated that for
a Lorentz profile line the amplitude of the soliton remains unchanged, the only effect of the perturbation results
in a phase shift.

PACS numbes): 42.65.Tg, 42.81.Dp

[. INTRODUCTION resents the existence criterion of the Lax representation. In
practice, the exact relationships between the parameters of

When a short optical pulse propagates through a dispeithe radiation and those of the medium may present a slight
sive nonlinear optical medium, the spectral content of thedeviation. Such a deviation can be treated as a perturbation
pulse can become modified because of the nonlinear optic&f the integrable system considered, thus the problem of the
process of self-phase modulation effect. The shape of theerturbed solitons investigation appears. Extensions of the
pulse can modify because of the propagation effects, such &grturbed solitons theory were made by Kd@pand Karp-
dispersion of the group velocity within the mediuti. man[8].

Under certain conditions it is possible for the effects of The present study is important because of several reasons.
the group velocity dispersion to completely compensate th&irst, the study is of great interest and leads to a sufficiently
effects of the self-modulation, so that optical pulses carfieneral approximation that can also be used in other almost
propagate through a dispersive, nonlinear optical mediunintegrable systems. Thus, we demonstrate the efficiency of
with an invariant shape. These pulses are known as opticasing the Riemann problem when analyzing the soliton per-
solitons. turbation. On the other hand, many possible applications and

The study of the propagation of the light pulses in mediatheoretical studies are permitted. For example, a similar ana-
with nonresonant nonlinearities establishes the effects of thiytical approximation can be used in the case of the propa-
self-focusing and anomalous dispersion on the pulse evolgation of the pseudosoliton pulses in dielectric waveguides
tion. The formation of solitons in such combined media was(optical fiberg having a resonant nonlinearity associated
first demonstrated2—4] by considering the scanning of a With a cubic nonlinearity.
bidimensional light beam, normally incident onto the surface In this study we have formulated the Riemann boundary
of a nonlinear medium. Under specific conditions, the lightProblem in connection with the inverse scattering method.
soliton emerges, having the properties of a traveling waveThen we present the necessary elements of the soliton per-
guide channel and of ar2pulse. turbation theory within the framework of the Riemann prob-

Owing to the analogy between the equations describindem.
the propagation of the incidental beaf&5,6 and of the
propagqting pulses, we can study the evolut.ion'of the soliton Il THE RIEMANN PROBLEM EOR SOLITONS
pulses in combined media. The formal similitude of the
equations allows the application of the results obtained when The equations system describing the stationary distribu-
studying the incidental pulses, to the pulses propagating ition of the scanning beam propagating in a Kerr-type reso-
the nonlinear medium by direct correspondence of the notanant medium, written in adimensional variable§2s3]
tions.

We studied the optical solitons in nonlinear resonant and de d% de
nonresonant media in the presence of perturbations, assum- d—z+i FE v&+2i,82|e|2e+<p)=0, (1.7
ing that the transient effects are stimulated by the scanning
beam. Using the self-induced transparency theory, the neces-
sary condition for the soliton existence i82=1, wherev is

the adimensional scanning speed ghis the parameter of v&—|5p+en=0, 1.2

the Kerr-type nonlinearity. This condition expresses a bal-

ance between different competing factors, such as the dif-

fraction divergence, the self-focusing, etc. @_ 1 S E0)=0 13
From the mathematical point of view, this condition rep- Yax 2 (ep+ep)=0, .3
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wheree is the slowly varying complex envelope of the light where

beam, p is the polarizability of the medium, and is the

population difference of the medium levels resonant with the

incidental light.

The angular brackets in Eql.1) signify an averaging
over the frequency detuning~(w— w,;) inside the inho-
mogenously broadened line,

=] p(orards @

whereg(6) is the profile of the line.
The normalization condition for the distributiay( ) is

flg(&)dézl. 3)

w is the frequency of the incidental light beam ang}, is the
resonant transition frequency. Tk axis is situated on the
surface of the nonlinear medium and tBe axis is oriented
towards the center of the medium.

Egs. (1.1),(1.2),(1.3 are integrable and admit a soliton
solution if the following condition is fulfilled 2]:

2Bv=1. (4)

The zero curvature representation
au_av u,v]=0 5
9z ax TUVI= )

is equivalent to Eq91) and(3) and it is given by theJ and
V matrices of the form

U=p(eo,—eo_)—ifoz=Up—i{os, (6)
. 1 i/op
V=—,3[ 1ey+ Zg—ﬁ)e—§<m> (o
__ 1)\ i p
+lley— 2{—ﬁ>e—§ §+—,85 o_
11 n 14 1
—|[§<£+B5>—ﬂ|e|2+ﬁ ZZ—E) 03]: (7

where( is the spectral parameterg, 0. =0o,*io, are the
Pauli matrices, ané is the complex conjugate &

For solving Eqs(1) by the inverse scattering meth{al,
we analyze the spectral problem

dd(x,2)
dx

U(x,0)®(x,0)=0. 8

We denote byT . (x,{) the Jost solutions matrix of E@8),
satisfying the conditions

J(&x)=exp(—ifozx). (9)

Consequently, the scattering matfg?) is

T,(X,g):T+(X,§)S(§), (10)

a(d) —b(?)
b() A

Let us introduce the matrice¥ . =T.J ! and separate
the two columns

S({)= (11)

}, detS({)=1.

V_.(x,0)=TP(x,0),92(x,0)). (12)

Considering that the electromagnetic fiedfx) becomes
zero sufficiently fast wherx| -, the columns¥) and
\If(f) are analytical in the upper semiplane of the complex
plane{ and the columna?® and¥ (Y are analytical in the
lower semiplane.

We define two new matriceé(x, ) and?(x,g):

0(x,0)=(¥(x,0), P (x,0))

and (13
0(x,0) =W P(x,0),9?(x,0)),
fulfilling the conditions:
deto(x,{)=a({),
deto(x,{)=a({),
0(X,{) ——— LX) 0-(HI™HLX),
O(X,8) ——— (LX) 0.(DI"HLX), (14)
where
a o0 1 b
0.(0=|p J,040=% 1,
— 1 —p — a o
0+(§): 0 5?1 0—(§): b 1l (15)

The matrice®d(x,£) and6(x,{) are connected to the scat-
tering matrix as follows:

0.(0)=S(0)6-(0), 6.(H=S6_(0). (16

Let {; and; be the zeros o&(¢) and ofa(¢), respec-

tively, for j=1,...N. In this case, the columng and ¢ are
proportional,

0D(x,¢)= () 602 (x,¢)),
¥i(X)=vy; exp2i{jx), Im{;>0, y;eC,

020, = =06 (x,Z),
Y(x)=y;exp(—2ix), Im{<0, y;eC. (17

The setb(¢) (¢=Re), {;, {;. v;, andy; represent the
scattering data.
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Further on we present a method leading to the reconstrude take the solution of Eq25) of the form

tion of the potentially(x) from the scattering data

Vo8 o ¢ (19
From relation(13) it follows that
07 (X,8) 0(x,£)=G(x,8), (19
where
G(x,£)=J(EX)G(£)I (&),
G(é)= b(lg) 5(15)}, 0" =detgo L. (20)

Equation(19) represents the matricial Riemann problem

[i.e., theG(x,{) factorization, defined for reaj, under the

conditions thatd and 6 admit analytical prolongation in the
upper and lower semiplanes of tli@lane, respectively An
analytical solution of the Riemann problem is of the form

0(x,¢))

N
0(x,)=1- i— ) =
(%,0) ;(g, 0) i)

1o(e de—
+2—7ﬂJ’_w§9(X,§)p(X,f), Im§>0

. L0 1
ax0=1-2, (4 al,) 2m
xjmﬁe(x HpT(x,), Im{<0 (21
g g PR
where
a(g)=(d/dd)@(£))e=¢;» é(zj)=(d/d§)(§(§))ngj,
Grx,&)—-1 _ G(x,&)—|
p+(X1§):(a)z—§))i P(Xaf):% (22)

andl is the identity matrix. Now we shall express the poten-

tial Ug(x) as a function of?(x,g).

This matrix admits the following asymptotic expansion

[9]:

0060 =1+ —Q(x)+0(|§| Y. (23

Then

1
Uo(x)= 5103, 2x)] or Be(x)=0Q(X), (24
A. z-axis evolution of the scattering matrix
We consider the evolution equation of the form

ao Vo =0. 25
rE (25)

d=0Ih(z), (26)

whereh(z) is a function to be determined. Setting- — o
into Eq. (14) we obtained

®—36_h(2),
i 1
2| Plirps) T
i
5

1
20—

V—=V_== 2,8)

(27)

w1+iw2)0'3.

By introducing Egs.(27) in Eqg. (25 we finally get the
evolution equation of the form

dn v 6~ 40— h. 28
dz 0- 0- dz (28)

For x— +o0, using Eq.(14) we obtain
®—JSH_h(z). (29

Introducing Eq.(28) in Eq. (27) with the condition

lim V= lim V, (30
X— — 0 X— +
we get
as_ V_,S 31
E_[ — ] ( )
From Eq.(31) it results
da_o db iw,)b=0 32
R Eﬂ(wl“wz) =0. (32

The features of the discrete spectrum obey the follovzing
evolution equations:

dgi
az- 0

dvy;

o5 Tileag)+iwa(g)]y=0 (33

B. Soliton solution for the slowly varying complex envelope of
the electric field

TakingN=1, p=p=0, and by help of the relatiofiL7)
we can reduce the systel) to the following form:

6.0 =1~ G X TOFA(0),
— 61
B4(X, o—l—g; fl Bs(X, {1)F1(X), (34)

where we denoted by, the corresponding soliton matrix in
this particular case and
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0 y1 1(X) 0 exply—id) By solving Egs.(34), we obtain
P00 0 [Tle-y+ie) 0 } _
. — g_gl 2|771 —_ -1
F0 { 0 Y1(X) 0s(x,2,0) = g_gll—g_—gl(l—Fl)(l—FlFl) :
1X)=—1—1
¥1 (X) 0 (37
B 0 exp—y—id)
= lexpty+i9) 0 } (35  when
We denoted by Q(x,2)=4n9,(1-F)(1—F,F) "% (38)

i=exfiloy(f) Hiwx(d)12Fieot ol Li=&itim From relation(38), with help from relation(24), we ob-

y=2mx—x), 9=(&/n)y+K tain the solitonlike solution:

T 271(2) .
K=[(&1/m)wa— w1]z+ (€11 )Xo+ @ot 5 e(x,2)= B exd —id(x,z)]sechy(x,2). (39

= —— (0,2 %) (36) Tﬁe explicit expressions for the soliton matricegx, )
2 and 64(x, ) are(a) for the continuous spectrum:

0s(x, &)= (€= {1) *HI(Y(%,2),6)], 0%, &) =(£— 1) *H(Y(%,2),8)],

_ &~ &1~ im(z)tanhy(x,2) —in(z)exgd —i9(x,z)]sechy(x,2)
HL(Y(x,2).6)]1= —in(z)exdiv(x,z)]sechy(x,z) &— &, +inq(z)tanhy(x,2z) (40
|
and (b) for the discrete spectrum dp dp
&—Ziﬁé\p‘l' 2Ben= —8&,
0s(X,{1)
C1lexg-y(x2)] —exg—id(x2)] LS.l 43
2| —exdiv(x,2)] exdy(x,2)] secty(x.2) ax Pleeten)=—eg. 43
. For the perturbed systet®3) we have the followinge
0(X,01)= E exr{y(x,z)] ex —i9(x,2)] sechy(x,z) curvature representation:
sSSPV 2lexdiv(x,2)]  exg—y(x,2)] o
(41) du dv UV —il o d¢ a4
97 ax TLU.VI=—i| eR+ Fos), (44)
Il. SCATTERING DATA IN THE PRESENCE R
OF PERTURBATIONS where the perturbation matriR is of the form:
In practice, condition(4) might be only approximately r dn dp 7
accomplished, namely, dx de dx
— - | - -
2Bv=1+¢ (42 5 1 {+po dx ©\ B
1 R: - —
2 dp dn
where the small parameteris due to the deviations of the dx dx
light beam and medium features from those required in the —ie—p T35 55
soliton regime case. Let us consider the case wheocurs - {(rh {rp - (45)

as a consequence of the difference between the experimental
value v and v, featuring the purely soliton regime, namely  The spectral equatiof8) keeps its form, with the only

2Bvo=1[e.g.,.e=2B(v—ro)]. . ~_ specification thatU, includes solutions of the perturbed
In this case, the perturbation term appears in the right S'déquation(43), while the evolution equatiof25) does not.
of Egs.(1) as By using the soliton perturbation theof$0] formulated
q P q q within the framework of the Riemann problem, we derive the
e e e e . ; . L
ge ue S dUe . o2 _ ae evolution with z of the scattering matrix in the presence of
dzjLI dx?~ "%dx +2ip%e"e+(p)=(=/2B) dx’ the perturbations



884

ds _ © 4
E—[V,,S]=—|80+ J J71o7RAJdX | 6%,
(46)

which gives

da .
a7~ &0 R0y,

db . ; (D], F PNy )
E+|(wl+|w2)b=s<0 |ooRexp(—2i¢x)|6'V), .
(47)
In this cased!) are the columns of and the notation
(0] f(x)|61), represents the integral

f 6D (x)f(x) 0D (x)dx. (48

The formulas for the discrete spectrum are obtained by

making the substitutioreR—eR+(d¢/dZ)o5 in relations
(47), where the limit condition{ approaches; ({—{4).
Thus we get

do; . .
o =662 2,

d
4o +iloal) +Hio i) In

_.n @ a9 (2)
Sal(gl) <01 |UZR|d§[0 (g) 71(X)0
X<€>]g-zl> —2i( 01" o,Rx| 61|, (49)
where
61 =61(x,¢,). (50)

IV. ADIABATIC APPROXIMATION
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where

9=[£1(2)/7:(2) ]y +K(2).
(53

y=271(2)[x—x(2)],

The £,(2), 71(2), x(2), andK(z) are to be determined.
The evolution of the soliton parameters is given by the rela-
tions (49).

In order to determine the perturbation matrix, we calcu-
late the polarizabilityp and the population differenaeusing
the solitontype solutiori39) and the equationél),

&1+ B6+imn, tanhy
(&4+BO)*+ 7t
2 el?

2 (§+BO+ 71

p=ipe

(54)

When

1 1
(E1+BO) %+ {+BS

Ry= 4,87;§< >secﬁytanhy,

/| —KsecRy+L tanhy+M
R12:_|e ’
{+Bo

| —Ksecky+L tanhy—M
Roi=le I+ B '

(59

where
2B
=,
(é1+ B0+ i

,335771

L=n(&1+B0+in)— m

E+ni+Boé,
(E2+BO+ 2

As referred to thez-axis evolution of the soliton param-

M=i&y(é+BS+iny) —ip? (56)

the direct

Let us consider the evolution of the soliton along the ©ters and making calculation, we  get
axis in the adiabatic case. In this case we neglect the distof9{"|o,R|62)),=0. It follows ;=& +i 77, =const.
tion of the soliton shape and the possible occurrence of a tail. Becausealé;/dz=0, we may conside¢; =0. This means
Thus, the only consequence of the perturbation consists of @ transform of the coordinates with respect to a referential
change of the-axis evolution of the soliton parameters from frame tied up to the soliton wave. The parameterand K
that expressed by the relatiof@6). are given by the following equations:

Let us consider that at the boundary surface of the me-
dium (z=0), the electromagnetic field has the soliton form dy W

€ B
dz " 29, 287, Re<<M‘“—fB252+m>

i . o
es(X.Z=0)=(2m/B)eXr{—ZI§1X—I ¢ot 5 e <2K—L+M>
+—=IM{——
2 252+ 2 [
X sectt27;X—Xo). (51 B B T
i ; dK € -5
We search the perturbed solutionegik,z) under the soli- e it Re (M=L 1
tonlike form dz= “1" By ( )ﬁ252+ 7
2m(z) L€ < Bo >
— _ —Im{ (2K=L+M) ——3). 5
e(x,z) 3 exf —i9(x,z)]sechy(x,z), (52 3 ( ),3252+ 7 (57
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For example, in the Lorentz line profile case 2m T
e(x,z)= 76)( iwZ—i@g—i 5
9(8)=(T/m)(8°+T?) 74, (58)
XSGCHer]lX—(wZ-I— Ssz)Z_Xo] (61)
t
we ge V. CONCLUSIONS
dK In this paper we have studied the propagation of the light
4z en (59 pulses in media with both resonant and nonresonant nonlin-
earities in order to establish the effect of such a symbiosis
upon the evolution of optical pulses. We have shown that a
dy 1 B 1 N [ 2'+3n /B 4 slight deviation from the necessary condition for the solitons
DA e _n > : . X =2
dz 279 | T T+ 7118 T+7,/82% B existence in such combined media leads to a modification of
the soliton parameters. The established corrections were de-
1 B2 termined in an analytical way, within the framework of the
—5l | 1=5 - (watedwy). (60)  perturbation theory, using a Riemann boundary problem in
n K connection with the inverse scattering method. Thus, for the

Lorentz profile line and generally for any symmetrical func-
Thus, for the Lorentz line profile and generally for any tion g( ) the entire effect of the perturbation in the adiabatic
symmetrical functiorg(d), the entire effect of the perturba- approximation appears only in the expression of if{e)
tion in the adiabatic case is present only in the expression gfarameter, while the amplitude of the soliton remains un-
x(2), while the amplitude of the soliton does not change, changed.
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